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Abstract—Sparse canonical correlation analysis (SCCA) is a bi-multivariate technique used in imaging genetics to identify complex

multi-SNP-multi-QT associations. However, the traditional SCCA algorithm has been designed to seek a linear correlation between the

SNP genotype and brain imaging phenotype, ignoring the discriminant similarity information between within-class subjects in brain

imaging genetics association analysis. In addition, multi-modality brain imaging phenotypes are extracted from different perspectives

and imaging markers from the same region consistently showing up in multimodalities may provide more insights for the mechanistic

understanding of diseases. In this paper, a novel multi-modality discriminant SCCA algorithm (MD-SCCA) is proposed to overcome

these limitations as well as to improve learning results by incorporating valuable discriminant similarity information into the SCCA

algorithm. Specifically, we first extract the discriminant similarity information between within-class subjects by the sparse

representation. Second, the discriminant similarity information is enforced within SCCA to construct a discriminant SCCA algorithm

(D-SCCA). At last, the MD-SCCA algorithm is adopted to fully explore the relationships among different modalities of different subjects.

In experiments, both synthetic dataset and real data from the Alzheimer’s Disease Neuroimaging Initiative database are used to test

the performance of our algorithm. The empirical results have demonstrated that the proposed algorithm not only produces improved

cross-validation performances but also identifies consistent cross-modality imaging genetic biomarkers.

Index Terms—Imaging genetics, sparse canonical correlation analysis, multi-modality, multi-SNP, Alzheimer’s disease

Ç

1 INTRODUCTION

ALZHEIMER’S disease (AD) is the most common form of
dementia. Early diagnosis and effective prevention

are important research topics for AD [1], [2], [3]. At pres-
ent, brain imaging genetics is an emerging field of study
in brain research [4], [5], [6], [7], [8], [9], [10], [11], [12]. It
aims to examine the association between genetic markers
such as single nucleotide polymorphisms (SNPs) [13]
and quantitative traits (QTs) extracted from multimodal
neuroimaging data (e.g., structured, functional, and
molecular imaging scans).

An increasing amount of high-dimensional biomedical
data, such as genome sequencing or brain imaging scans, are
collected every day. Bridging these two factors and exploring
their connections have the potential to assist a better mecha-
nistic understanding of normal or disordered brain functions.
The complexity of these data, however, has presented critical
bioinformatics challenges requiring new enabling tools. In

early imaging genetic studies, pairwise univariate analy-
ses [14], [15], [16], [17], [18] were often performed to identify
the associations between SNPs and neuroimaging QTs. In
recent studies, taking into account the inherent structure
among genotype or phenotype data, regression analysis and
bi-multivariate analyses have achieved promising results for
revealing complexmulti-SNP-multi-QT associations [19], [20],
[21], [22], [23], [24], [25], [26]. Canonical correlation analysis
(CCA) is a common multivariate approaches to integrate two
or more data types [27]. It has been applied to imaging genet-
ics applications. The basic idea is to find the best linear trans-
formations for imaging and genetics features so that the
highest correlation between imaging and genetic components
can be achieved. Based on the assumption that a real imaging
genetic signal typically involves a small number of SNPs and
QTs, sparse canonical correlation analysis (SCCA) has also
been applied in several imaging genetic studies by imposing
the Lasso regularization term to yield sparse results [22], [23],
[24], [25]. Some extensions of SCCA are subsequently pro-
posed to take advantage of the specific structure and group
information [28], [29], [30], [31], [32], [33]. However, most of
the existing SCCA algorithms are utilized to seek linear corre-
lation of two data, do not consider the discriminant similarity
information between different subject groups in feature
extraction for brain imaging genetics association analysis.
How to mine the potential information in a large amount of
multi-modal data remains a challenging problem. Ignoring
the discriminant similarity information in the data will inevi-
tably limit the capability of yielding optimal results.
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In this paper, we propose a novel multi-modality
discriminant SCCA algorithm (MD-SCCA) to overcome this
limitation as well as improve learning results by incorporat-
ing valuable discriminant similarity information. Specifi-
cally, our proposed method contains three steps: 1) Extract
the discriminant similarity information between within-
class subjects. The discriminant similarity information is
extracted between within-class subjects by the sparse
representation. 2) Construct a discriminant SCCA algorithm
(D-SCCA). The traditional SCCA algorithm has been
designed to seek a linear correlation between the SNP geno-
type and brain imaging phenotype data, ignoring the dis-
criminant similarity information between within-class
subjects in brain imaging genetics association analysis. The
discriminant similarity information is enforced within the
SCCA algorithm to construct a discriminant SCCA algo-
rithm. 3) Present a multi-modality discriminant SCCA
model. As multi-modality brain imaging phenotypes are
extracted from different perspectives, imaging markers con-
sistently showing up in multi-modality may provide more
insights into the mechanistic understanding of diseases (i.e.,
Alzheimer’s disease). A novel multi-modality discriminant
SCCA algorithm is adopted to fully explore the relation-
ships among different modalities of different subjects. We
demonstrate the effectiveness of our algorithm with both
synthetic and real data. For real data, two modalities of phe-
notypes, voxel-based measures extracted from structural
MRI (VBM-MRI) and fluorodeoxyglucose positron emission
tomography (FDG-PET) scans are used to evaluate the asso-
ciations between the imaging data (VBM-MRI and FDG-
PET) and the APOE SNP data. All the data are downloaded
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort. The empirical results have demonstrated
that our proposed algorithm produces improved cross-vali-
dation performances as well as biologically meaningful
results.

The rest of this paper is organized in the following fash-
ion. Section 2 Introduces the multi-modality discriminant
SCCA algorithm. Related simulation and experimental
results are included in Section 3. Section 4 further studies
the identified SNP loci, the identified brain regions, regular-
ization influence, and high-dimensional in simulations, as
well as presents the limitations of our method and possible
research directions. Conclusions are given in Section 5.

2 METHODOLOGY

We first describe the relevant notation. The lowercase letters
and uppercase letters are respectively used to denote the
vectors and matrices. Let X ¼ ½x1; . . . ; xn; . . . ; xN �T 2 RN�p

be the SNP genotype data, Y ¼ ½y1; . . . ; yn; . . . ; yN �T 2 RN�r

be the phenotype data, where N is the number of subjects,
and p; r are the feature numbers of SNPs and imaging data,
respectively.

2.1 Sparse Canonical Correlation Analysis (SCCA)

For detecting complex multi-SNP-QT associations, sparse
canonical correlation analysis [22], [23], [24], [25] is a power-
ful association method that seeks linear transformations of
two data sets X and Y to achieve the maximal correlation
betweenXu and Yv, which can be formulated as

max
u;v

uTXTYv

s:t: uTXTXu � 1; vTY TYv � 1; kuk1 � c1; kvk1 � c2;

(1)

where u and v are canonical loadings or weights, reflecting
the contribution of each feature in the identified canonical
correlation. Note that uTXTXu � 1 and vTY TYv � 1 are
used to embrace the covariance structure of the data in the
model. kuk1 � c1 and kvk1 � c2 are constraints for control-
ling the sparsity so that only a small number of relevant fea-
tures will be selected automatically from the SNP and
imaging data. The optimization function of SCCA [34] can
also be formulated as follows:

max
u;v

uT
XN
i;j¼1

ðxi � xjÞT ðyi � yjÞv

s:t: uT
XN
i;j¼1

ðxi � xjÞT ðxi � xjÞu � 1;

vT
XN
i;j¼1

ðyi � yjÞT ðyi � yjÞv � 1;

kuk1 � c1; kvk1 � c2:

(2)

2.2 Discriminant Similarity Information Between
Subject Classes

From the above Eqs. (1) and (2), the SCCA method only con-
siders the correlation betweenX and Y , ignoring the relation-
ship between the subjects ðxi and xj, or yi and yjÞ. The weight
matrix of the sparse representation can reflect the intrinsic
geometric properties of the data [35]. Otherwise, in order to
preserve the class information for the SNP genotype data, we
only use the samples with the same label to reconstruct xi, for

c classes samples, Sx ¼ ½xð1Þ
1 ; . . . ; xð1Þ

n1
; . . . ; x

ðdÞ
1 ; . . . ; xðdÞ

nd
; . . . ;

x
ðcÞ
1 ; . . . ; x

ðcÞ
Nc
�, where Sx 2 Rp�N . c is the number of classes. x

ðdÞ
i

denotes the ith sample in the dth class. Then, for the sample

x
ðdÞ
i from dth class, a sparse reconstructive weight vector

ðWx
i ÞðdÞ is computed as

min
ðWx

i
ÞðdÞ�0

1

2
x
ðdÞ
i � ðSxÞðdÞðWx

i ÞðdÞ
��� ���2

2
þ� ðWx

i ÞðdÞ
��� ���

1
; (3)

where � is a regularized parameter. ðWx
i ÞðdÞ is the sparse

reconstructive weight vector where the element in the posi-
tion of x

ðdÞ
i is zero. The optimization problem for Eq. (3) can

be solved by the SLEP toolbox [36]. When we get
ðWx

i Þð1Þ; . . . ; ðWx
i ÞðdÞ; . . . ; ðWx

i ÞðcÞ which are the optimal solu-
tion of Eq. (3), the discriminant similarity matrix Dx can be
defined as

Dx ¼ ½ðWx
i Þð1Þ; . . . ; ðWx

i ÞðcÞ� þ ½ðWx
i Þð1Þ; . . . ; ðWx

i ÞðcÞ�T : (4)

According to the above process, for phenotypedata,we can
also get the the discriminant similaritymatrixDy as follows:

Dy ¼ ½ðWy
i Þð1Þ; . . . ; ðWy

i ÞðcÞ� þ ½ðWy
i Þð1Þ; . . . ; ðWy

i ÞðcÞ�T : (5)

where the discriminant similarity matrices Dx and Dy are
the N �N symmetric matrices, Dx

ij and Dy
ij are the elements
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of discriminant similarity matrices Dx and Dy, which repre-
sent the contribution of each exi and eyi to reconstruct xi and
yi. Generally speaking, if the elements Dx

ij and Dy
ij are

larger, the samples exi and eyi are more important to recon-
struct xi and yi.

It is worth noting that we only use the samples with the
same label to reconstruct xi and yi for preserving the class
information. The sparse weight matrices Dx and Dy can
reflect the intrinsic geometric properties of the data to some
extent and naturally preserve potential discriminant infor-
mation. It observes the discriminant similarity information
between different diagnostic groups (A specific diagnostic
group is formed by all the subjects with the same diagnostic
label (i.e., NC, SMC, EMCI, LMCI, or AD)).

2.3 Discriminant Sparse Canonical Correlation
Analysis (D-SCCA)

The SCCAmethod is not able to capture relationships across
subjects. To address this issue, we consider the information
between subjects ðxi and xj, or yi and yjÞ as previously men-
tioned in Section 2.2. The local structure information and
the within-class cross correlations are here incorporated
into Eq. (2). The discriminant sparse canonical correlation
analysis can be expressed as

max
u;v

uT ð
XN
i;j¼1

Dx
ijðxi � xjÞTDy

ijðyi � yjÞ þ
XN
i;j¼1

ðDx
ij þDy

ijÞxT
i yjÞv

s:t: uT
XN
i;j¼1

Dx
ijðxi � xjÞTDx

ijðxi � xjÞu � 1;

vT
XN
i;j¼1

Dy
ijðyi � yjÞTDy

ijðyi � yjÞv � 1;

kuk1 � c1; kvk1 � c2;

(6)

where Dx
ij and Dy

ij are elements of the discriminant similar-
ity matrices Dx and Dy. As can be seen, there are some dif-
ferences between Eqs. (2) and (6). First, the discriminant
similarity matrices Dx and Dy are obtained by sparse recon-
struction instead of the standard euclidean distance. The
sparse weight matrix can reflect the intrinsic geometric
properties of the data to some extent and naturally preserve
potential discriminant information. Second, we emphasize
the cross correlations between two modalities (genotype
and phenotype) from within-class samples by adding the
correlation term

PN
i;j¼1ðDx

ij þDy
ijÞxT

i yj, which can capture

the local structure information in the cross correlation

among different subjects of different modalities. In sum-

mary, the optimization problem of our proposed D-SCCA
method in Eq. (6) can be written in the equivalent form as

max
u;v

uTXTRxyYv

s:t: uTXTDxxXu � 1; vTY TDyyYv � 1; kuk1 � c1; kvk1 � c2;
(7)

where Rxy ¼ 2Dxy þDx þDy.Dxy ¼ diagðDx �DyÞ � ½Dx �Dy�,
Dxx ¼ diagðDx �DxÞ � ½Dx �Dx�, Dyy ¼ diagðDy �DyÞ�
½Dy �Dy�, the symbol � denotes an operator such that
½Dx �Dy� ¼ ½Dx

ijD
y
ij�, diagðDx �DyÞ is a diagonal matrix with

Dx
ijD

y
ij main diagonal elements. The model not only

preserves the relationships from the SNP and imaging data,
but also concerns the correlation within-class subjects. More

details can be found in the Supplementary Materials, which

can be found on the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/

TCBB.2019.2944825.

2.4 Multi-Modality Discriminant Sparse Canonical
Correlation Analysis (MD-SCCA)

Acommon practice in coupled datasets is extracting relation-
ships from different modalities, whichmay provide essential
complementary information for the association study. Given
N training subjects or samples with M modalities of pheno-
types Y m ¼ ½ym1 ; . . . ; ymn ; . . . ; ymN �T 2 RN�rðm; q ¼ 1; . . . ;MÞ.
Then, the following ‘multi-modality D-SCCA’ formulation is
proposed

max
u;V

XM
m¼1

uTXTRxYm
Y mvm þ

XM
m;q¼1;m< q

vTmðY mÞTRYmY q
Y qvq

s:t: uTXTDxxXu � 1; vTmðY mÞTDYmYm
Y mvm � 1;

kuk1 � c; kvmk1 � cm;

(8)

where RxYm ¼ 2DxYm þDx þDYm
, RYmY q ¼ 2DYmY qþ

DYm þDY q
, DxYm ¼ diagðDx �DYmÞ � ½Dx �DYm �, Dxx ¼

diagðDx �DxÞ � ½Dx �Dx�, DYmYm ¼ diagðDYm �DYmÞ�
½DYm �DYm �. In Eq. (8), the model incorporates multi-SNP-
multi-QT associations (the first term) and multi-QT-QT (the
second term) associations together within the learning
framework. For convenience, assuming M ¼ 2, the second
term in Eq. (8) is expressed as follows:

max
v1v2

vT1 ðY 1ÞTRY 1Y 2
Y 2v2; (9)

the Eq. (9) can extract the correlated feature between different
modalities as a regularization term, which provides essential
complementary information for this association study.

As mentioned above, we introduce multi-modality
discriminant-similarity sparse canonical correlation analy-
sis, which incorporates valuable discriminant similarity
information into the SCCA algorithm in order to improve
the learning results in brain imaging genetics association
analysis. As Eq. (8) depicted, the correlation between the
within-class neighborhoods is maximized, and also the cor-
relation among between-class neighborhoods approaches to
zero. In theory, as a generalization of the existing work bi-
convex, the objective function Eq. (8) is a multi-convex prob-
lem, so the global optimum can be guaranteed [37]. More-
over, when M ¼ 1, Eq. (8) will degenerate into the D-SCCA
model, which shows that this equation has a more general
application scene.

2.5 Optimization

In this section, an algorithm is designed to solve the optimi-
zation problem defined in Eq. (8). We use the Lagrange mul-
tiplier and write the penalties into the objective function to
get the following expression:
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Lðu; v1; . . . ; vMÞ ¼ min
u;V

XM
m¼1

kXu�RxYm
Y mvmk22

þ
XM

m;q¼1;m<q

kY mvm �RYmY q
Y qvqk22 þ

a

2
kDxxXuk22

þ
XM
m¼1

am

2
kDYmYm

Y mvmk22 þ bkuk1 þ
XM
m¼1

bmkvmk1;

(10)

where ða;a1; . . . ;aMÞ and ðb;b1; . . . ;bMÞ are the parameters.
The parameters ða;a1; . . . ;aMÞ and ðb;b1; . . . ;bMÞ need to
be tuned to control the global sparsity. Otherwise, in order
to explain that these results are insensitive to ða;a1; . . . ;aMÞ
settings, we show the performances of our method on simu-
lated datasets. Here, we implement our experiments on the
simulated datasets introduced in Section 3.2, and the regu-
larization parameters ða;a1; . . . ;aMÞ are tuned from f10�3;

3� 10�3; 10�2; 3� 10�2; 10�1; 3� 10�1; 1; 3; 10; 30; 100g. Sup-
plementary Fig. S1, available online, and Supplementary
Fig. S2, available online, show all the test performances of
MD-SCCA (a ¼ 1) and MD-SCCA (grid search) in the simu-
lations, which demonstrate that these results are insensitive
to ða;a1; . . . ;aMÞ settings. Following our experiments,
assuming a ¼ a1 ¼ . . . ¼ aM ¼ 1 for the sake of simplicity.
Since the L1 norm introduced as the regularization term is
not differentiable at 0, a similar optimization has been used
in [38] for the solution of the Eq. 10. The solution for u, v1,
. . ., and vM in each iteration step is as follows:

u ¼ ðXTDxxX þ bHÞ�1XT
XM
m¼1

RxYm
Y mvm

 !
; (11)

v1 ¼ ððY 1ÞTDY 1Y 1
Y 1 þ b1H1Þ�1ðY 1ÞT ðRxY 1

Xu

þ
XM
q¼2

RY 1Y q
Y qvqÞ

..

.

vM ¼ ððY MÞTDYMYM
Y M þ bMHMÞ�1ðY MÞT ðRxYM

Xu

þ
XM�1

q¼1

RYMY q
Y qvqÞ; :

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
(12)

where H is a diagonal matrix with the kth element as
1

2kukk1
ðk 2 ½1; p�Þ, H1 is a diagonal matrix with the k1th ele-

ment as 1

2kvk1
1
k1
ðk1 2 ½1; r�Þ, . . ., and HM is a diagonal matrix

with the kM th element as 1

2kvkM
M

k1
ðkM 2 ½1; r�Þ. Here, when

juj ¼ 0, jv1j ¼ 0, . . ., and jvM j ¼ 0, the kth, k1th, . . ., and kM th

elements 1
2kukk1

, 1

2kvk1
1
k1
, . . ., and 1

2kvkM
M

k1
can not be computed.

So we consider 1
2kukk1

, 1

2kvk1
1
k1
, . . ., and 1

2kvkM
M

k1
as 1

2
ffiffiffiffiffiffiffiffiffiffi
uk

2þ�
p ,

1

2

ffiffiffiffiffiffiffiffiffi
v
k2
1

1
þ�

q , . . ., and 1

2

ffiffiffiffiffiffiffiffiffiffiffi
v
k2
M

M
þ�

q , � is a very small real number.

Since H;H1; . . . ; HM rely on u; v1; . . . ; vM , the iterative
procedure is introduced to solve this objective. In each itera-
tion, we first fix v1; . . . ; vM to solve u, then, fix u; v2; . . . ; vM

to solve v1, finally, fix u; v1; . . . ; vM�1 to solve vM . The proce-
dure stops until it satisfies a predefined stopping criterion.
The general optimization procedure of the proposed algo-
rithm is described in Algorithm 1.

Algorithm 1.MD-SCCAMethod

1 Input: SNP genotype X ¼ ½x1; . . . ; xn; . . . ; xN �T 2 RN�p;
Multi-modality imaging phenotype
½ym1 ; . . . ; ymn ; . . . ; ymN �T 2 RN�r; Subjects with label informa-
tion (i.e., NC, SMC, EMCI, LMCI or AD)

2 Output: u; v1; . . . ; vM
3 Optimization:
1: Construct Dx;DY 1

; . . . ; DYm
with the discriminant infor-

mation by the sparse representation;

2: GetRxY 1
; . . . ; RxYm

;RYmY q ðm 6¼ qÞ;Dxx;DY 1Y 1
; . . . ;DYmYm

;
3: Initialization: u 2 Rp�1; v1 2 Rr�1; . . . ; vm 2 Rr�1;
4: While not converged regarding to u; v1; . . . ; vm do
5: Calculate the diagonal matrix T , where the kth element is

1
2kukk1

;

6: Update u ¼ ðXTDxxX þ bT Þ�1XT ðPM
m¼1 R

xYm
Y mvmÞ;

7: Scale u so that kXuk2 ¼ 1;
8: Calculate the diagonal matrix T1, where the k1th element

is 1

2kvk1
1
k1
;

9: Update v1 ¼ ððY 1ÞTDY 1Y 1
Y 1 þ b1T1Þ�1ðY 1ÞT ðRxY 1

XuþPM
q¼2 R

Y 1Y q
Y qvqÞ;

10: Scale v1 so that kY 1v1k2 ¼ 1;

11: ..
.

12: Calculate the diagonal matrix TM , where the kM th element
is 1

2kvkM
M

k1
;

13: Update
14: vM ¼ ððY MÞTDYMYM

Y M þ bMTMÞ�1ðY MÞT ðRxYM
XuþPM�1

q¼1 RYMY q
Y qvqÞ;

15: Scale vM so that kY MvMk2 ¼ 1;
16: End while.

3 EXPERIMENT

In this section, we evaluate the performances of our method
on both simulated and real datasets.

3.1 Experimental Settings
In our experiments, the 5-fold cross-validation strategy is
adopted to evaluate the effectiveness of our proposed
method. The regularization parameters ðb;b1; . . . ;bMÞ in
Eq. (10) are tuned using a grid search from the range of
f10�3; 3� 10�3; 10�2; 3� 10�2; 10�1; 3� 10�1; 1; 3; 10; 30; 100g.
The performance on each dataset is assessed with the corre-
lation coefficient (CC) between actual and predicted
response values, which is widely used in measuring per-
formances of regression and association analysis.

We choose the existing SCCAbasedmethods for compari-
son in this study, including the state-of-the-art method
AGN-SCCA [31], and the benchmark algorithm SCCA (CCA
with lasso) used in [22], [23], [24], [25]. We do not compare
ourmethodswith KG-SCCA [25] since it requires predefined
group and network structure. We also do not compare our
methods with TGSCCA [29] because it only focuses on the
time-point features in brain from longitudinal phenotypes.
In addition, T-SCCA [38], S2CCA [39], and ssCCA [40], and
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CCA-SG [24] are opted out, since they are knowledge-guided
methods and applicable only when priori knowledge is
available.

3.2 Experimental Results on Simulation Data

For our first test, a simulation study is presented,which is sim-
ilar to the procedure of simulation generation inHao et al. [29]
and Fang et al. [30]. First, one canonical vector a with s

0
non-

entries and successive canonical vector b with l
0
non-entries

were generated, where akþ1 ¼ ak þ Da, Da 	 Nð0; 0:1Þ, and
k ¼ 1. Each non-zero variable in a1 and b is sampled inde-
pendently from a uniform distribution in the range of
½�2;�0:5� [ ½0:5; 2�. Then, we consider the data belonging to
two classes in all simulations. Each class consists of N ¼ 500
samples. Specifically, one latent variable t1 with normal distri-
bution Nð0; stÞ for 300 samples is randomly generated. For
the data matrices X and Y , the features are simulated from
Gaussian distributionsNðbt1; swIlÞ and Nðakt1; swIsÞ, respec-
tively; the other latent variable t2 with normal distribution
Nð1; stÞ for 200 samples is randomly generated. For the data
matrices X and Y , the features are simulated from Gaussian

distributions Nðbt2; swIlÞ and Nðakt2; swIsÞ, respectively. Set
l ¼ 100, s ¼ 50, s

0 ¼ 30, l
0 ¼ 20, and st ¼ 0:1. In this paper, the

noise levels sw ¼ 0:1; 0:3; 0:5 are given to generate threediffer-
ent simulation datasets.

We compare our proposed methods (including MD-SCCA
andD-SCCA)with SCCAandAGN-SCCAalgorithms, respec-
tively. As shown in Fig. 1, all methods yield stable results on
the simulation datasetswith lownoise, however, ourproposed
MD-SCCA consistently outperforms SCCA, AGN-SCCA, and
D-SCCA in themetric of correlation coefficients on the simula-
tion datasets with high noise. Furthermore, we show the esti-
mated canonical weights fromdifferent methods. As shown in
Fig. 2, the overall profiles of the estimated u and v values from
MD-SCCA are consistent with the ground truth on simulation
datasets, whereas D-SCCA, AGN-SCCA, and SCCA are only
capable of identifying regionwise-inconsistent signals at differ-
ent modalities. In addition, MD-SCCA is comparable with D-
SCCA, AGN-SCCA, and SCCA due to the low noise, while
MD-SCCA ismore robust to the datasetswith high noise.

3.3 Experimental Results on Imaging Genetic Data

1) Data acquisition: Data used in the preparation of this article
were obtained from the Alzheimer’s disease Neuroimaging
Initiative database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other
biological markers, clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease.
For up-to-date information, seewww.adni-info.org.

ADNI is the result of efforts of many coinvestigators from a
broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the
US and Canada. The initial goal of ADNI was to recruit 800
adults, aged 55-90, to participate in the research-approxi-
mately 200 cognitively normal older individuals to be followed
for 3 years, 400 peoplewithMCI to be followed for 3 years, and
200 people with an early AD to be followed for 2 years. In cur-
rent studies, a total of 913 non-HispanicCaucasian participants
with both imaging and genotyping data available are studied,
which include 211 normal control (NC), 82 significantmemory
concern (SMC), 273 early mild cognitive impairment (EMCI),
187 late mild cognitive impairment (LMCI) and 160 AD.
Table 1 lists the demographics of all these subjects.

Since genetic risk factors can help scientists focus on rele-
vant biological pathways and form an effective hypothesis for
drug design, identifying risk genetic markers associated with
brain imaging assists to understand the underlying biological
mechanisms. We downloaded the ADNI-GO/2 genotyping
data and performed quality control and population stratifica-
tion using the approach described in the previous study. To
limit the potential effects of population stratification, this
study focuses only on analyzing non-Hispanic white partici-
pants. As the best-known genetic risk factor in the AD, APOE
(located on chromosome 19) has a key role in coordinating the
mobilization and redistribution of cholesterol, phospholipids,
and fatty acids, and it is implicated in mechanisms such as
neuronal development, brain plasticity, and repair functions.
Thus, we concern our analysis on all SNPs within 20 k base
pairs of the APOE gene boundary based on the ANNOVAR
(http://annovar.openbioinformatics.org) annotation, which
include a total number of 85 SNPs as candidates. For the input
in the models, each SNP value was coded in an additive fash-
ion as 0, 1, or 2, indicating the number ofminor alleles.

Fig. 1. The averaged correlation coefficients on 5-fold test data using dif-
ferent methods on different simulation datasets. (a) Results on simula-
tion dataset 1. (b) Results on simulation dataset 2. (c) Results on
simulation dataset 3.
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The VBM-MRI and FDG-PET data used in this paper were
also obtained from the ADNI database (adni.loni.usc.edu).
We aligned the preprocessed imaging data (including VBM
and FDG) to each participant’s same visit scan, and then cre-
ated normalized gray matter density maps from VBM data in
the standard Montreal Neurological Institute (MNI) space as
2� 2� 2 mm3 voxels, registered the FDG scans into the same
space by SPM software package. 116 ROI level measurements
of mean gray matter densities and FDG glucose utilization
were further extracted based on the MarsBaR AAL atlas [41].
The imaging measures on each modality (VBM and FDG) of
116 ROIs were used as QTs in our experiments. All the meas-
ureswere pre-adjusted for age, gender, and education.

2) Quantitative analysis: In the real data experiments, we
also compare our proposed methods (including MD-SCCA,
D-SCCA) with SCCA and AGN-SCCA algorithms, respec-
tively. Similar to the previous analysis, 5-fold cross-validation
is utilized to optimally tune the parameters. Ten experiments
are performed with ten different partitions to eliminate the
bias. For each single experiment, the samepartition is used for
the MD-SCCA, D-SCCA, AGN-SCCA, and SCCA. Tables 2
and 3 exhibit both training and testing correlation coefficients
where each individual result and its mean and standard devi-
ation are shown. Obviously, MD-SCCA and D-SCCA are
observed to outperform the AGN-SCCA and SCCA in every
single experiment on both training and test performance for

TABLE 1
Characteristics of the Subjects, Note: NC=Normal Control, SMC=Significant Memory Concern, EMCI=Early Mild Cognitive

Impairment, LMCI=Late Mild Cognitive Impairment, and AD=Alzheimer’s Disease

Subjects NC SMC EMCI LMCI AD

Number 211 82 273 187 160
Gender(Male/Female) 109/102 33/49 153/120 108/79 95/65
Age(mean
std) 76:14
 6:53 72:45
 5:67 71:48
 7:12 73:86
 8:44 75:18
 7:88
Education(mean
std) 16:45
 2:62 16:78
 2:67 16:08
 2:62 16:38
 2:81 15:86
 2:75

Fig. 2. The estimated weights of u and v from average 5-fold cross-validation test on different simulation datasets are shown in the left four panels and right
four panels, corresponding to differentmethods. (a) Results on simulation dataset 1. (b) Results on simulation dataset 2. (c) Results on simulation dataset 3.
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FDG and VBM imaging data. And, MD-SCCA is more stable
than D-SCCA, AGN-SCCA and SCCA. Moreover, the paired
t-test is performed to compare the performance across ten
experiments. The MD-SCCA outperforms SCCA and AGN-
SCCA significantly in both training (p < 0:05 (FDG),
p < 0:05 (VBM)) and test cases (p < 0:05 (FDG), p < 0:05
(VBM)). The D-SCCA outperforms SCCA and AGN-SCCA
significantly in both training (p < 0:05 (FDG), p < 0:05
(VBM)) and test cases (p < 0:05 (FDG), p < 0:05 (VBM)). The
resulting p-value (p < 0:05) shows that the improvement for
ourmethods are statistically significant.

3) Identification of risk SNP loci and imaging ROI markers:
Besides improving association performance, one major goal
of this study is to identify some vital SNP loci and imaging
phenotypic markers for disease progression in AD research.
Therefore, finding genetic risk factors and imaging ROIs
helps scientists better understand how the disease develops
and identify possible treatments to study. Fig. 3 compares
the average regression coefficients of different methods.

Here, regression coefficients are the combinations of geno-
type for risk SNP loci and brain phenotype for the ROIs.
This figure demonstrates the canonical loadings tested from
5-fold cross-validation in one experiment, suggesting rele-
vant genetic (top three panels) and imaging (bottom three
panels) markers. As expected, our proposed methods
(including MD-SCCA, D-SCCA) can select significant ROIs
and SNP loci. Although it may affect different sets of SNP
loci and ROIs while using different imaging data (including
FDG and VBM) as phenotype, our proposed methods
(including MD-SCCA, D-SCCA) can jointly select consistent
and clear SNP loci (rs429358-C) and ROIs (right hippocam-
pus) association with AD for different imaging data, which
are in accordance with prior findings [42], [43]. In addition,
our proposed MD-SCCA method also can jointly select
other consistent and clear SNP loci and ROIs for different
imaging data. These results demonstrate the effectiveness of
our proposed method and show great potential for further
investigation.

TABLE 2
Five-Fold Cross Validation Results on FDG Imaging Data: The Models Learned from the Training Data are used to

Estimate the Correlation Coefficients between Canonical Components for Both Training and Testing Sets

Method Train Test

f1 f2 f3 f4 f5 mean 
 std f1 f2 f3 f4 f5 mean 
 std

SCCA

exp1 0.4471 0.4329 0.4449 0.4434 0.4487 0.4434
 0.0062 0.1959 0.2468 0.2289 0.1553 0.1189 0.1891
 0.0525
exp2 0.4526 0.4392 0.4527 0.4480 0.4514 0.4488
 0.0057 0.1920 0.2466 0.2179 0.1564 0.1193 0.1864
 0.0501
exp3 0.4423 0.4274 0.4383 0.4394 0.4467 0.4388
 0.0072 0.1968 0.2447 0.2348 0.1513 0.1210 0.1897
 0.0532
exp4 0.4471 0.4329 0.4449 0.4434 0.4487 0.4434
 0.0062 0.1959 0.2468 0.2289 0.1553 0.1189 0.1891
 0.0525
exp5 0.4471 0.4329 0.4449 0.4434 0.4487 0.4434
 0.0062 0.1959 0.2468 0.2289 0.1553 0.1189 0.1891
 0.0525
exp6 0.4526 0.4392 0.4527 0.4480 0.4514 0.4488
 0.0057 0.1920 0.2466 0.2179 0.1564 0.1193 0.1864
 0.0501
exp7 0.4526 0.4392 0.4527 0.4480 0.4514 0.4488
 0.0057 0.1920 0.2466 0.2179 0.1564 0.1193 0.1864
 0.0501
exp8 0.4471 0.4329 0.4449 0.4434 0.4487 0.4434
 0.0062 0.1959 0.2468 0.2289 0.1553 0.1189 0.1891
 0.0525
exp9 0.4471 0.4329 0.4449 0.4434 0.4487 0.4434
 0.0062 0.1959 0.2468 0.2289 0.1553 0.1189 0.1891
 0.0525
exp10 0.4526 0.4392 0.4527 0.4480 0.4514 0.4488
 0.0057 0.1920 0.2466 0.2179 0.1564 0.1193 0.1864
 0.0501

AGN-SCCA

exp1 0.2932 0.3004 0.2711 0.2834 0.2900 0.2876
 0.0111 0.1439 0.1683 0.3169 0.1543 0.2017 0.1970
 0.0705
exp2 0.2919 0.3004 0.2712 0.2834 0.2900 0.2874
 0.0109 0.1422 0.1682 0.3162 0.1550 0.2019 0.1967
 0.0704
exp3 0.2908 0.2983 0.2680 0.2812 0.2883 0.2853
 0.0114 0.1422 0.1665 0.3018 0.1599 0.2010 0.1943
 0.0638
exp4 0.2932 0.3004 0.2711 0.2834 0.2900 0.2876
 0.0111 0.1439 0.1683 0.3169 0.1543 0.2017 0.1970
 0.0705
exp5 0.2911 0.2988 0.2674 0.2818 0.2859 0.2850
 0.0117 0.1427 0.1680 0.2973 0.1594 0.1903 0.1966
 0.0616
exp6 0.2911 0.2988 0.2674 0.2818 0.2859 0.2850
 0.0117 0.1427 0.1680 0.2973 0.1594 0.1903 0.1966
 0.0616
exp7 0.2919 0.3004 0.2712 0.2834 0.2900 0.2874
 0.0109 0.1422 0.1665 0.3018 0.1599 0.2010 0.1943
 0.0638
exp8 0.2859 0.2964 0.2668 0.2783 0.2876 0.2830
 0.0111 0.1434 0.1649 0.3084 0.1670 0.1982 0.1964
 0.0656
exp9 0.2871 0.2986 0.2702 0.2808 0.2892 0.2852
 0.0105 0.1433 0.1674 0.3226 0.1624 0.1994 0.1990
 0.0719
exp10 0.2874 0.2989 0.2705 0.2812 0.2893 0.2854
 0.0105 0.1440 0.1690 0.3231 0.1615 0.1999 0.1995
 0.0720

D-SCCA

exp1 0.3126 0.3146 0.2780 0.3283 0.3074 0.3082
 0.0185 0.2330 0.2192 0.3341 0.1238 0.2111 0.2242
 0.0749
exp2 0.3126 0.3146 0.2780 0.3283 0.3074 0.3082
 0.0185 0.2330 0.2192 0.3341 0.1238 0.2111 0.2242
 0.0749
exp3 0.3006 0.3052 0.2644 0.3210 0.2978 0.2978
 0.0207 0.2387 0.2185 0.3173 0.1200 0.2138 0.2216
 0.0705
exp4 0.3131 0.3157 0.2795 0.3296 0.3102 0.3096
 0.0184 0.2380 0.2234 0.3362 0.1255 0.2066 0.2259
 0.0754
exp5 0.3126 0.3146 0.2780 0.3283 0.3074 0.3082
 0.0185 0.2330 0.2192 0.3341 0.1238 0.2111 0.2242
 0.0749
exp6 0.3126 0.3146 0.2780 0.3283 0.3074 0.3082
 0.0185 0.2330 0.2192 0.3341 0.1238 0.2111 0.2242
 0.0749
exp7 0.3131 0.3157 0.2795 0.3296 0.3102 0.3096
 0.0184 0.2380 0.2234 0.3362 0.1255 0.2066 0.2259
 0.0754
exp8 0.2948 0.2973 0.2565 0.3168 0.2916 0.2914
 0.0218 0.2403 0.2200 0.3032 0.1166 0.2118 0.2184
 0.0672
exp9 0.3006 0.3052 0.2644 0.3210 0.2978 0.2978
 0.0207 0.2387 0.2185 0.3173 0.1200 0.2138 0.2216
 0.0705
exp10 0.2953 0.2985 0.2585 0.3182 0.2950 0.2931
 0.0216 0.2446 0.2244 0.3063 0.1189 0.2053 0.2195
 0.0681

MD-SCCA

exp1 0.3200 0.3189 0.2854 0.3372 0.3337 0.3190
 0.0205 0.2322 0.2382 0.3496 0.1063 0.2038 0.2260
 0.0870
exp2 0.3200 0.3189 0.2854 0.3372 0.3337 0.3190
 0.0205 0.2322 0.2382 0.3496 0.1063 0.2038 0.2260
 0.0870
exp3 0.3265 0.3211 0.2867 0.3393 0.3324 0.3212
 0.0204 0.2283 0.2320 0.3522 0.1094 0.2006 0.2245
 0.0869
exp4 0.3265 0.3211 0.2867 0.3393 0.3324 0.3212
 0.0204 0.2283 0.2320 0.3522 0.1094 0.2006 0.2245
 0.0869
exp5 0.3265 0.3211 0.2867 0.3393 0.3324 0.3212
 0.0204 0.2283 0.2320 0.3522 0.1094 0.2006 0.2245
 0.0869
exp6 0.3200 0.3189 0.2854 0.3372 0.3337 0.3190
 0.0205 0.2322 0.2382 0.3496 0.1063 0.2038 0.2260
 0.0870
exp7 0.3200 0.3189 0.2854 0.3372 0.3337 0.3190
 0.0205 0.2322 0.2382 0.3496 0.1063 0.2038 0.2260
 0.0870
exp8 0.3240 0.3201 0.2862 0.3380 0.3322 0.3201
 0.0202 0.2296 0.2337 0.3505 0.1085 0.2019 0.2249
 0.0865
exp9 0.3200 0.3189 0.2854 0.3372 0.3337 0.3190
 0.0205 0.2322 0.2382 0.3496 0.1063 0.2038 0.2260
 0.0870
exp10 0.3265 0.3211 0.2867 0.3393 0.3324 0.3212
 0.0204 0.2283 0.2320 0.3522 0.1094 0.2006 0.2245
 0.0869
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4 DISCUSSION

In this section, we first show the most prominent SNP loci
and brain regions identified by the proposed method, then
discuss regularization influence of our method, show high-
dimensional in simulations, and present the limitations of
our method as well as possible future research directions.

4.1 Identification of The Most Related SNP Loci

As expected, the best-known risk genetic loci rs429358 has
been identified by our proposed MD-SCCA method for all
imaging data, which indicates the promise of our method in
terms of identifying strong imaging genetic signals that are
also related to AD diagnosis. The C allele increases the risk
of the AD in APOE e4, which is encoded by rs429358 [44].

4.2 Identification of The Most Related Brain Regions

For detecting brain imaging ROIs, we average the obtained
sparse coefficients by 5-fold cross-validation for FDG and

VBM imaging data. Then, the top 10 maximum weight ROIs
are selected as the important ROI markers. The top 10 selected
imaging features as shown in Table 4, as well as their average
regression coefficients across five cross-validation trials, are
visualized in Fig. 4 by mapping them onto the human
brain [45]. As expected, left hippocampus, right hippocampus,
left amygdala, and right amygdala have been detected on top
10 ROIs associated with the risk genotype biomarker by the
proposed MD-SCCA method. It’s worth noting that these sta-
ble markers are in accordance with the previous studies. For
example, the reduction of hippocampal gray matter has been
correlated with the risk SNP locus (rs429358-C) [42], [43], [46].
It is well known that the selected right calcarine cortex is
related to the metabolic alteration in the brain, which shows
that our proposedmethod can effectively utilize FDG imaging
data [47], [48]. Meanwhile, the left inferior frontal gyrus (oper-
cular) and left lingual gyrus have potentially associated with
mild cognitive impairment [13], [49]. Besides confirming the

TABLE 3
Five-Fold Cross Validation Results on VBM Imaging Data: The Models Learned from the Training Data are used to

Estimate the Correlation Coefficients between Canonical Components for Both Training and Testing Sets

Method Train Test

f1 f2 f3 f4 f5 mean 
 std f1 f2 f3 f4 f5 mean 
 std

SCCA

exp1 0.4260 0.4338 0.4290 0.4069 0.4260 0.4244
 0.0103 0.1633 0.1496 0.0958 0.2041 0.2698 0.1565
 0.0394
exp2 0.4046 0.4287 0.3945 0.3992 0.4196 0.4093
 0.0144 0.2337 0.1679 0.0674 0.2364 0.2037 0.1818
 0.0697
exp3 0.4053 0.4303 0.4101 0.4039 0.4231 0.4145
 0.0116 0.2830 0.1798 0.0804 0.2519 0.1842 0.1959
 0.0782
exp4 0.4023 0.4267 0.3865 0.3974 0.4192 0.4064
 0.0163 0.2660 0.1731 0.0658 0.2452 0.1992 0.1899
 0.0785
exp5 0.3994 0.4233 0.3824 0.3999 0.4193 0.4048
 0.0166 0.2760 0.1746 0.0603 0.2523 0.1941 0.1915
 0.0842
exp6 0.4492 0.4661 0.4542 0.4353 0.4571 0.4524
 0.0114 0.2691 0.1526 0.0917 0.2564 0.1428 0.1825
 0.0769
exp7 0.4023 0.4267 0.3865 0.3974 0.4192 0.4064
 0.0163 0.2660 0.1731 0.0658 0.2452 0.1992 0.1899
 0.0785
exp8 0.4642 0.4715 0.4640 0.4395 0.4658 0.4610
 0.0124 0.1408 0.1420 0.0643 0.2452 0.1543 0.1493
 0.0643
exp9 0.4492 0.4661 0.4542 0.4353 0.4571 0.4524
 0.0114 0.2691 0.1526 0.0917 0.2564 0.1428 0.1825
 0.0769
exp10 0.4046 0.4287 0.3945 0.3992 0.4196 0.4093
 0.0144 0.2337 0.1679 0.0674 0.2364 0.2037 0.1818
 0.0697

AGN-SCCA

exp1 0.3784 0.3551 0.3487 0.3798 0.3388 0.3602
 0.0182 0.1904 0.2149 0.1978 0.1166 0.2397 0.1919
 0.0461
exp2 0.3784 0.3551 0.3487 0.3798 0.3388 0.3602
 0.0182 0.1904 0.2149 0.1978 0.1166 0.2397 0.1919
 0.0461
exp3 0.3784 0.3551 0.3487 0.3798 0.3388 0.3602
 0.0182 0.1904 0.2149 0.1978 0.1166 0.2397 0.1919
 0.0461
exp4 0.3687 0.3136 0.3284 0.4067 0.3505 0.3536
 0.0314 0.1899 0.1375 0.1766 0.2242 0.1460 0.1748
 0.0349
exp5 0.4076 0.3932 0.4619 0.3186 0.3638 0.3890
 0.0531 0.1716 0.2118 0.1355 0.1295 0.1960 0.1689
 0.0362
exp6 0.3784 0.3551 0.3487 0.3798 0.3388 0.3602
 0.0182 0.1904 0.2149 0.1978 0.1166 0.2397 0.1919
 0.0461
exp7 0.4505 0.4022 0.4373 0.2268 0.4141 0.3862
 0.0911 0.2391 0.2112 0.1615 0.1395 0.1615 0.1826
 0.0411
exp8 0.3784 0.3551 0.3487 0.3798 0.3388 0.3602
 0.0182 0.1904 0.2149 0.1978 0.1166 0.2397 0.1919
 0.0461
exp9 0.3784 0.3551 0.3487 0.3798 0.3388 0.3602
 0.0182 0.1904 0.2149 0.1978 0.1166 0.2397 0.1919
 0.0461
exp10 0.4505 0.4022 0.4373 0.2268 0.4141 0.3862
 0.0911 0.2391 0.2112 0.1615 0.1395 0.1615 0.1826
 0.0411

D-SCCA

exp1 0.2978 0.3130 0.3320 0.2929 0.3086 0.3088
 0.0152 0.3499 0.1770 0.1790 0.2567 0.2306 0.2186
 0.0383
exp2 0.2786 0.2910 0.3081 0.2734 0.2846 0.2872
 0.0134 0.2284 0.1784 0.1662 0.2658 0.2360 0.2150
 0.0416
exp3 0.2786 0.2910 0.3081 0.2734 0.2846 0.2872
 0.0134 0.2284 0.1784 0.1662 0.2658 0.2360 0.2150
 0.0416
exp4 0.2978 0.3130 0.3320 0.2929 0.3086 0.3088
 0.0152 0.3499 0.1770 0.1790 0.2567 0.2306 0.2186
 0.0383
exp5 0.2820 0.2945 0.3115 0.2773 0.2886 0.2908
 0.0133 0.2320 0.1787 0.1699 0.2647 0.2357 0.2162
 0.0404
exp6 0.2897 0.3025 0.3199 0.2849 0.2980 0.2990
 0.0136 0.2411 0.1780 0.1770 0.2620 0.2347 0.2186
 0.0388
exp7 0.2978 0.3130 0.3320 0.2929 0.3086 0.3088
 0.0152 0.3499 0.1770 0.1790 0.2567 0.2306 0.2186
 0.0383
exp8 0.2937 0.3073 0.3256 0.2886 0.3031 0.3037
 0.0143 0.2459 0.1775 0.1786 0.2592 0.2333 0.2189
 0.0384
exp9 0.2937 0.3073 0.3256 0.2886 0.3031 0.3037
 0.0143 0.2459 0.1775 0.1786 0.2592 0.2333 0.2189
 0.0384
exp10 0.2978 0.3130 0.3320 0.2929 0.3086 0.3088
 0.0152 0.3499 0.1770 0.1790 0.2567 0.2306 0.2186
 0.0383

MD-SCCA

exp1 0.3028 0.3061 0.3021 0.2788 0.3007 0.2981
 0.0110 0.1861 0.1833 0.2532 0.2417 0.2511 0.2231
 0.0353
exp2 0.3028 0.3061 0.3021 0.2788 0.3007 0.2981
 0.0110 0.1861 0.1833 0.2532 0.2417 0.2511 0.2231
 0.0353
exp3 0.2914 0.3001 0.2936 0.2714 0.2916 0.2896
 0.0108 0.2090 0.1761 0.2397 0.2426 0.2458 0.2226
 0.0299
exp4 0.3127 0.3218 0.3221 0.2912 0.3209 0.3137
 0.0132 0.2043 0.1956 0.2567 0.2465 0.2673 0.2341
 0.0322
exp5 0.3028 0.3061 0.3021 0.2788 0.3007 0.2981
 0.0110 0.1861 0.1833 0.2532 0.2417 0.2511 0.2231
 0.0353
exp6 0.3028 0.3061 0.3021 0.2788 0.3007 0.2981
 0.0110 0.1861 0.1833 0.2532 0.2417 0.2511 0.2231
 0.0353
exp7 0.3127 0.3218 0.3221 0.2912 0.3209 0.3137
 0.0132 0.2043 0.1956 0.2567 0.2465 0.2673 0.2341
 0.0322
exp8 0.2851 0.2945 0.2881 0.2665 0.2858 0.2840
 0.0105 0.2250 0.1732 0.2246 0.2453 0.2457 0.2228
 0.0296
exp9 0.2914 0.3001 0.2936 0.2714 0.2916 0.2896
 0.0108 0.2090 0.1761 0.2397 0.2426 0.2458 0.2226
 0.0299
exp10 0.2969 0.3120 0.3097 0.2800 0.3071 0.3011
 0.0132 0.2448 0.1855 0.2304 0.2505 0.2592 0.2341
 0.0291
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prior findings, ourmethod also yields the associations between
risk SNP loci and other eminent AD markers such as left orbi-
tofrontal cortex (inferior), left lingual gyrus, left inferior frontal

gyrus (triangular), and right rectus gyrus. There also appear to
be specific relationships among genotypes, phenotypes, and
neuropsychiatric symptoms that deserve further investigation.

Fig. 3. The estimated weights of u (top three panels) and v (bottom three panels) from average 5-fold cross-validation test on ADNI datasets using
different methods.
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4.3 Regularization Influence of Our Proposed Model

In the simulations, we also discuss our proposed model
Eq. (10) without regularization terms since the sample size
is much higher than the dimension. Table 5 and Fig. 5 show

all the test performances of MD-SCCA and MD-SCCA with-
out regularization terms in the simulations. As can be seen
from Table 5 and Fig. 5, the regularization terms control the
global sparsity of our proposed model, which can produce
improved cross-validation performances.

4.4 High-Dimensional Case in Simulations

For our test, we also include the high-dimensional case into our
simulations, which is similar to the procedure of simulation
generation in Section 3.2. We consider the data belonging to
two classes in all simulations. Each class consists of N ¼ 100
samples. Specifically, one latent variable t1 with normal distri-
bution Nð0; stÞ for 80 samples is randomly generated. For the
datamatricesX and Y , the features are simulated fromGauss-
ian distributions Nðbt1; swIlÞ and Nðakt1; swIsÞ, respectively;
the other latent variable t2 with normal distribution Nð1; stÞ
for 20 samples is randomly generated. For the data matricesX
and Y , the features are simulated from Gaussian distributions
Nðbt2; swIlÞ and Nðakt2; swIsÞ, respectively. Set l ¼ 200,
s ¼ 150 ðN < l < sÞ, s0 ¼ 30, l

0 ¼ 20, and st ¼ 0:1. In this
paper, the noise levels sw ¼ 0:1; 0:3; 0:5 are given to generate
three different simulation datasets.

We compare our proposed methods (including MD-
SCCA and D-SCCA) with SCCA and AGN-SCCA

TABLE 4
The Top 10 ROIs Selected by the

MD-SCCA Method for FDG and VBM

ID Name

37 L. Hippocampus

41 L. Amygdala

15 L. Orbitofrontal cortex (inferior)

47 L. Lingual gyrus

13 L. Inferior frontal gyrus (triangular)

38 R. Hippocampus

44 R. Calcarine cortex

28 R. Rectus gyrus

11 L. Inferior frontal gyrus (opercular)

42 R. Amygdala

L. = left; R. = right.

Fig. 4. Visualization of the mapping top 10 ROIs selected by the MD-
SCCA method for FDG and VBM. The color represents the regression
coefficients of the corresponding VBM markers.

TABLE 5
The Averaged Correlation Coefficients on 5-Fold

Test Data on Different Simulation Datasets

Simulation data 1

M1 M2

MD-SCCA(no regularization) 0.9430 0.9368

MD-SCCA 0.9701 0.9719

Simulation data 2
M1 M2

MD-SCCA(no regularization) 0.7697 0.7772

MD-SCCA 0.7956 0.8195

Simulation data 3
M1 M2

MD-SCCA(no regularization) 0.4236 0.4752

MD-SCCA 0.5772 0.6307

(a) Results on simulation dataset 1. (b) Results on simulation dataset 2.
(c) Results on simulation dataset 3. M1 and M2 are two different modalities.

Fig. 5. The estimated weights of u and v from average 5-fold cross-
validation test on different simulation datasets are shown in the left three
panels and right three panels, corresponding to different methods.
(a) Results on simulation dataset 1. (b) Results on simulation dataset 2.
(c) Results on simulation dataset 3.
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algorithms, respectively. As shown in Fig. 6, all methods
yield stable results on the simulation data with low noise,
however, our proposed MD-SCCA consistently outper-
forms SCCA, AGN-SCCA, and D-SCCA in the metric of cor-
relation coefficients on the simulation data with high noise.
Furthermore, in Fig. 7, we show the estimated canonical
weights from different methods. As can be observed, the
overall profiles of the estimated u and v values from MD-
SCCA are consistent with the ground truth on simulation
dataset.

4.5 Limitations and Future Work

Although the proposedmethod achieves good results in brain
imaging genetics association analysis, there are still several
limitations to be considered in this study. First,when the num-
ber of samples exceeds the number of total features, the MD-
SCCA model can be successfully applied for association dis-
covery coupled with feature selection. However, when the
datasets contain far more features (e.g., SNPs at the genome-
wide magnitude), it will greatly increase the computational
complexity and memory requirement. It is interesting to

Fig. 6. The averaged correlation coefficients on 5-fold test data using different methods on different simulation datasets. (a) Results on simulation
dataset 1. (b) Results on simulation dataset 2. (c) Results on simulation dataset 3.

Fig. 7. The estimated weights of u and v from average 5-fold cross-validation test on different simulation datasets are shown in the left four panels
and right four panels, corresponding to different methods. (a) Results on simulation dataset 1. (b) Results on simulation dataset 2. (c) Results on sim-
ulation dataset 3.
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further investigate the genome-wide analysis and build a scal-
able model to apply to more complex imaging genetic tasks,
which will be one of our future works. Second, the normal
equation in the optimization contains matrix inversion opera-
tions. We can consider developing a more efficient solution to
further improve the performance of ourmethod. Third, in this
study, we have explored the information within-class subjects
in feature extraction for brain imaging genetics association
analysis. However, the effect of the subject gender is another
important topic, which may affect the identifications in multi-
variate associations due to the potential bias introduced by
different subjects in a study. In this case, the subject gender
should be considered in the study.

5 CONCLUSION

In this paper, a brain imaging genetics study has been per-
formed to explore the relationship between two modalities of
imaging phenotypes (including VBM-MRI, FDG-PET) and
genetic variations in the APOE gene. Because most of the
existing SCCA algorithms have been designed to seek linear
correlation of two data, which cannot yield optimal results
owing to ignoring the disease-specific information in feature
extraction for brain imaging genetics association analysis. We
have proposed a novel MD-SCCA algorithm, which not only
overcomes this above limitation, but also can incorporate
valuable discriminant similarity information into SCCA algo-
rithm to produce improved learning results. A comparative
study has been performed between our proposed algorithm
and the two competing SCCA algorithms on both synthetic
and real data. The promising empirical results demonstrated
that our proposed algorithm significantly outperforms the
SCCA and AGN-SCCA algorithms in both cases. Further-
more, our proposed algorithm could accurately recover the
true signals from the synthetic data, as well as yield improved
canonical correlation performances and biologicallymeaning-
ful findings from real data. Specifically, the main contribution
of this work is to identify a compact set of robust and consis-
tent genetic-imaging markers across the multi-modality phe-
notypes (i.e., MRI-VBM and FDG-PET) to have a better
mechanistic understanding ofAD biology.
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